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ABSTRACT 
Area and circumference of circle are calculated with the help of either square or with the help of triangle or with the 

help of polygon having many sides.  In this paper square root 2 is obtained from two circles and area and circumference 

of circle are calculated from the same square root two of circle. 
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     INTRODUCTION 
Circle is a beautiful geometrical entity, having a radius, which keeps circumference uniformly away from the centre 

of the circle.  Another basic geometrical entity is square.  It is a straight-lined entity.  Its area and perimeter are 

calculated with its side (a) using the formulae a2 and 4a.  The area and circumference of circle are calculated with the 

help of r2 and 2r, where ‘r’ is radius and  is a constant. 

 

In this paper, two circles create a right angled triangle and consequential length equal to an irrational number 2 /2.   

2 /2 plays an essential role in finding the area and circumference of circle.  So, here one point is very clear.  There 

is no , involved here.  Secondly, the diameter and GB length are enough to find the 4 areas of curvilinear segments 

LH, HBJ, JK and KAL. 

 

PROCEDURE 
Draw a circle with centre O and diameter AB.  D is the midpoint of OB.  Draw a smaller circle with centre D and 

diameter OB.  Draw a tangent AE on the smaller circle which touches the smaller circle at F.  Join FD. 

1. Diameter AB = d, AO = OB = radius = 
d

2
 

2. Smaller diameter OB = 
d

2
, OD = DF = smaller radius = 

d

4
 

3. Triangle AFD is a right angled triangle. 

Triangle AFD : AD = AO + OD = 


  
d d 2d d 3d

2 4 4 4
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Fig-1 

 

FD = 
d

4
;  AF = ? 

Pythagorean theorem: AD2 – FD2 = AF2 

= 
   

    
   

2 2

23d d
AF

4 4
 

   
    

   

2 2
3d d

AF
4 4

 = 
2d

2
 

4. It is clear that an irrational number 
2

2
 is created by two circles.  In other words, it supports, the new 

theory that 2  is a hidden truth in circle.  It also gives a clear and first step to find out the length of the 

circumference of the AB diameter circle, which is larger in size. 

5. Fig.2: 

AB = diameter, Centre = O 


2d

AF
2

 of Fig.1 = AF of Fig.2 also = 
2d

2
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6. FB = AB – AF = 
  

  
 

2d 2d 2d
d

2 2
 

7. Bisect FB into FG and GB,   FG = GB = 
 
 
 

2 2
d

4
 

 
Fig.2 

8. Circumference of larger circle whose diameter is ‘d’ is equal to  

3 diameters (3 AB) + GB 

= 
2 2 14 2

3d d d
4 4

    
    
   

 

9. We know formula for circumference of a circle is d. 

Where 
 
 
 

14 2
d

4
 = d 

 
 

   

14 2
d

4 14 2

d 4
 

 

Part-B : Area of the Circle 
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10. Draw a perpendicular line on AB at G which intersects circumference at H and J. And HJ is surprisingly 

equal to 
2d

2
 

So, AF = HJ = 
2d

2
 

 
Fig.3 

11. HJ is also called as chord of the circle. 

12. Four equidistant such HJ chords create a square in the circle  

with side = 
2d

2
 

Square KJHL, side = KJ = JH = HL = LK = 
2d

2
 

Area of the Square = KJHL = LK x KJ = 
2d 2d

2 2
 = 
 

 
 

2
22 d
d

4 2
 

13. We know formula for the area of the circle = 
 2d

4
 

14. The area in between the inscribed square KJHL and the circle is  

Circle area – Square area 

http://www.ijesrt.com/


 
[Reddy*, 5.(1): January, 2015]  ISSN: 2277-9655 

 (I2OR), Publication Impact Factor: 3.785 

   

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [387] 

  
   

 

2 2
2d d 2
d

4 2 4
 

15. From S. No. 9 we understand  is equal to 
14 2

4
 

16. So, the formula for the in-between area is 
 

 
 

22
d

4
 

17. In Fig.3, we have the following line segments 

(a) Diameter = AB = d 

(b) AF = 

2d

2  

(c) Side of square LKJH = AF =  KJ = 
2d

2
 and 

(d) GB line segment = 
 
 
 

2 2
d

4
 of step 7 

18. The following formula is based on the above line segments for in between area.  Formula for the in-

between area   

= 
Diameter GBlength

4diameters

 
 
 

 Square of diameter = 
 

 
 

2AB GB
AB

4AB
  

= 

  
  

  
 
 
 
 

2

2 2
d d

4
d

4d
 

19. Area of the square = 
 

 
 

2
22d d

2 2
 

20. Area of the circle = Square area + in between area  

= 

  
  

    
 
 
 

2 2
2

2 2
d d

4d d
d

2 4d 4
 


14 2

4


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21. 

 
  

  

2 2
d d

4 6 2

4d 16
 

So, 
6 2

16
 is another circle constant which, when it is multiplied with square of the diameter, gives 

value to, the in between area of square and circle. 

 

CONCLUSION 
The length of the circumference and area of the circle are arrived at, without using Pi constant, and are possible 

with concerned line segments, such as diameter, tangent on a smaller circle etc.  In calculating the area of circle,  (= 

 
 
 

14 2

4
) is multiplied with the square of the diameter and divided by 4.  Whereas, in finding the in-between area 

of square and circle, another new constant equal to 
6 2

16
 is multiplied with the square of the diameter. 
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